Classifications of some special infinity-harmonic maps
نویسندگان
چکیده
∞-Harmonic maps are a generalization of ∞-harmonic functions. They can be viewed as the limiting cases of p-harmonic maps as p goes to infinity. In this paper, we give complete classifications of linear and quadratic ∞-harmonic maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean spaces, between Sol and Euclidean spaces. We also study holomorphic ∞-harmonic maps between complex Euclidean spaces. M.S.C. 2000: 58E20; 53C12.
منابع مشابه
Some Classifications of ∞-harmonic Maps between Riemannian Manifolds
∞-Harmonic maps are a generalization of ∞-harmonic functions. They can be viewed as the limiting cases of p-harmonic maps as p goes to infinity. In this paper, we give complete classifications of linear and quadratic ∞harmonic maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean spaces, be...
متن کاملHarmonic maps from R^n to H^m with symmetry
It is known that there is no nonconstant bounded harmonic map from the Euclidean space R to the hyperbolic space H. This is a particular case of a result of S.-Y. Cheng. However, there are many polynomial growth harmonic maps from R to H by the results of Z. Han, L.-F. Tam, A. Treibergs and T. Wan. One of the purposes of this paper is to construct harmonic maps from R to H by prescribing bounda...
متن کاملSome geometrical properties of the oscillator group
We consider the oscillator group equipped with a biinvariant Lorentzian metric. Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Left-invariant vector fields defining harmonic maps are...
متن کاملON f -BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
A. Both bi-harmonic map and f -harmonic map have nice physical motivation and applications. In this paper, by combination of these two harmonic maps, we introduce and study f -bi-harmonic maps as the critical points of the f -bi-energy functional 1 2 ∫ M f |τ(φ)| dvg. This class of maps generalizes both concepts of harmonic maps and biharmonic maps. We first derive the f -biharmonic map ...
متن کاملHarmonic maps and singularities of period mappings
We use simple methods from harmonic maps to investigate singularities of period mappings at infinity. More precisely, we derive a harmonic map version of Schmid’s nilpotent orbit theorem. MSC Classification 14M27, 58E20
متن کامل